Core and patch position optimizations for vibration control of piezolaminated structures

This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminat...

ver descrição completa

Detalhes bibliográficos
Autor principal: Moita, José Mateus Simões (author)
Outros Autores: Correia, Victor (author), Soares, Cristovão M. Mota (author), Soares, Carlos A. Mota (author)
Formato: article
Idioma:eng
Publicado em: 2009
Assuntos:
Texto completo:http://hdl.handle.net/10400.1/174
País:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/174
Descrição
Resumo:This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.