Resumo: | The energy transmission and distribution systems existing today are stillsignificantly dependent on transformers,despite beingmore efficient and sustainable than those of decadesago. However, a large numberof power transformers alongwith other infrastructures have been in service for decades and are considered to be in their final ageing stage. Anymalfunction in the transformerscouldaffect the reliability of the entire electric network and alsohave greateconomic impact on the system.Concernsregardingurban air pollution, climate change, and the dependence on unstable and expensive supplies of fossil fuels have lead policy makers and researchers to explore alternatives to conventional fossil-fuelled internal combustion engine vehicles. One such alternative is the introduction of electric vehicles. A broad implementation of such mean of transportation could signify a drastic reduction in greenhouse gases emissions and could consequently form a compelling argument for the global efforts of meeting the emission reduction targets. In this thesis the topic of a high penetration of electric vehicles and their possible integration in insular networksis discussed. Subsequently, smart grid solutions with enabling technologies such as energy management systems and smart meters promote the vision of smart households, which also allows for active demand side in the residential sector.However, shifting loads simultaneously to lower price periods is likely to put extra stress on distribution system assets such as distribution transformers. Especially, additional new types of loads/appliances such as electric vehicles can introduce even more uncertaintyon the operation of these assets, which is an issue that needs special attention. Additionally, in order to improve the energy consumption efficiencyin a household, home energy management systems are alsoaddressed. A considerable number ofmethodologies developed are tested in severalcasestudies in order to answer the risen questions.
|