Necessary optimality conditions for fractional difference problems of the calculus of variations

We introduce a discrete-time fractional calculus of variations. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that the solutions of the fractional problems coincide wit...

ver descrição completa

Detalhes bibliográficos
Autor principal: Bastos, N. R. O. (author)
Outros Autores: Ferreira, R. A. C. (author), Torres, D. F. M. (author)
Formato: article
Idioma:eng
Publicado em: 2014
Assuntos:
Texto completo:http://hdl.handle.net/10400.19/2434
País:Portugal
Oai:oai:repositorio.ipv.pt:10400.19/2434
Descrição
Resumo:We introduce a discrete-time fractional calculus of variations. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that the solutions of the fractional problems coincide with the solutions of the corresponding non-fractional variational problems when the order of the discrete derivatives is an integer value.