Evolving time-lagged feedforward neural networks for time series forecasting

Time Series Forecasting (TSF) is an important tool to sup- port both individual and organizational decisions. In this work, we propose a novel automatic Evolutionary Time- Lagged Feedforward Network (ETLFN) approach for TSF, based on an Estimation Distribution Algorithm (EDA) that evolves not only A...

ver descrição completa

Detalhes bibliográficos
Autor principal: Peralta Donate, Juan (author)
Outros Autores: Cortez, Paulo (author), Gutierrez Sanchez, German (author), Sanchis de Miguel, Araceli (author)
Formato: conferencePaper
Idioma:eng
Publicado em: 2011
Assuntos:
Texto completo:http://hdl.handle.net/1822/14849
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/14849
Descrição
Resumo:Time Series Forecasting (TSF) is an important tool to sup- port both individual and organizational decisions. In this work, we propose a novel automatic Evolutionary Time- Lagged Feedforward Network (ETLFN) approach for TSF, based on an Estimation Distribution Algorithm (EDA) that evolves not only Artificial Neural Network (ANN) parame- ters but also which set of time lags are fed into the fore- casting model. Such approach is compared with similar strategy that only selects ANN parameter and the conven- tional TSF ARIMA methodology. Several experiments were held by considering six time series from distinct domains. The obtained multi-step ahead forecasts were evaluated us- ing SMAPE error criteria. Overall, the proposed ETLFN method obtained the best forecasting results. Moreover, it favors simpler neural network models, thus requiring less computational effort.