An empirical study on anomaly detection algorithms for extremely imbalanced datasets

Anomaly detection attempts to identify abnormal events that deviate from normality. Since such events are often rare, data related to this domain is usually imbalanced. In this paper, we compare diverse preprocessing and Machine Learning (ML) state-of-the-art algorithms that can be adopted within th...

ver descrição completa

Detalhes bibliográficos
Autor principal: Fontes, Gonçalo (author)
Outros Autores: Matos, Luís Miguel (author), Matta, Arthur (author), Pilastri, André Luiz (author), Cortez, Paulo (author)
Formato: conferencePaper
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:https://hdl.handle.net/1822/81441
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/81441