EMG-based motion intention recognition for controlling a powered knee orthosis

Powered assistive devices have been playing a major role in gait rehabilitation. This work aims to develop a user-oriented assistive strategy with an EMG-based control using a powered knee orthosis (PKO) to provide assistive commands according to the user's motion intention tracked by electromy...

ver descrição completa

Detalhes bibliográficos
Autor principal: Fernandes, Pedro Nuno (author)
Outros Autores: Figueiredo, Joana (author), Moreira, Luis (author), Felix, Paulo (author), Correia, Ana (author), Moreno, Juan C. (author), Santos, Cristina (author)
Formato: conferencePaper
Idioma:eng
Publicado em: 2019
Assuntos:
Texto completo:http://hdl.handle.net/1822/71238
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/71238
Descrição
Resumo:Powered assistive devices have been playing a major role in gait rehabilitation. This work aims to develop a user-oriented assistive strategy with an EMG-based control using a powered knee orthosis (PKO) to provide assistive commands according to the user's motion intention tracked by electromyography (EMG) signals. To achieve this goal, the work first comprised the development of a wired EMG acquisition system, the study and implementation of a knee joint torque estimation method, and the development of a real-time controller, which uses the estimated torque as the reference actuator's torque to provide user-oriented assistance in walking. We used a proportional gain method to estimate the knee torque, which required a calibration procedure, allowing to determine the relation between the EMG signal and the actuator's torque. The EMG-based control was validated with two subjects walking in a treadmill. The EMG-based control performed as expected since it proved to be functional and time-effective when assisting the user's movements in walking at different walking speeds. Findings show that the developed assistive strategy can effectively follow the user's motion intention and has the potential for gait rehabilitation of patients with residual muscular strength.