Resumo: | Mobile backhauling, small cells and millimeter waves (mmWaves) are key important technologies to support the next-generation cellular networks. The 5th generation (5G) radio networks introduce several different elements from the previous generations and hence, network planning became even more complex. In this work, the focus is on creating a radio network planning algorithm towards 5G mmWave small cell architectures. The algorithm is divided between the radio access network and the backhaul network. The former aims to find optimal locations for small cells to guarantee coverage requirements, while the latter creates backhaul links between the small cells according to a specific topology, and chooses which of them should be gateways. The results give some insights on base station (BS) and gateway density, and demonstrate that the topology most likely to meet Quality of Service (QoS) requirements, while minimizing the number of gateways, is the mesh network. However, tree and star topologies are also useful in certain scenarios. The work also includes a comparison between the 28 GHz and 60 GHz frequency bands, which are two common candidates for mmWave backhauling.
|