Generalized inverses and their relations with clean decompositions
An element a in a ring R is called clean if it is the sum of an idempotent e and a unit u. Such a clean decomposition a = e + u is said to be strongly clean if eu = ue and special clean if aR eR = (0). In this paper, we prove that a is Drazin invertible if and only if there exists an idempotent e an...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2019
|
Assuntos: | |
Texto completo: | https://hdl.handle.net/1822/64193 |
País: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/64193 |