Resumo: | With the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra.
|