Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to t...

ver descrição completa

Detalhes bibliográficos
Autor principal: Coelho, Maria Isabel Esteves (author)
Outros Autores: Corsato, Chiara (author), Rivetti, Sabrina (author)
Formato: article
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/10400.21/5014
País:Portugal
Oai:oai:repositorio.ipl.pt:10400.21/5014
Descrição
Resumo:We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.