Electrosynthesis of 1-D metallic nanoparticles from DES using porous anodic templates

O método de síntese de nanoparticulas 1-D assistido por um modelo tornou-se um tópico em voga na química após o desenvolvimento de filmes anódicos com poros bem ordenados. Contudo, a maioria dos trabalhos nesta área tem sido feita utilizando filmes porosos destacados devido à presença de uma barreir...

ver descrição completa

Detalhes bibliográficos
Autor principal: Starykevich, Maksim (author)
Formato: doctoralThesis
Idioma:eng
Publicado em: 2018
Assuntos:
Texto completo:http://hdl.handle.net/10773/21694
País:Portugal
Oai:oai:ria.ua.pt:10773/21694
Descrição
Resumo:O método de síntese de nanoparticulas 1-D assistido por um modelo tornou-se um tópico em voga na química após o desenvolvimento de filmes anódicos com poros bem ordenados. Contudo, a maioria dos trabalhos nesta área tem sido feita utilizando filmes porosos destacados devido à presença de uma barreira no fundo dos poros. No entanto, esta estratégia segue demasiados passos, o que aumenta o seu custo, torna mais difícil a execução e impõe várias limitações. Consequentemente, existe a necessidade de uma técnica que permita o enchimento (electrofilling) dos tubos sem remover a camada barreira – esta tese representa o nosso contributo para esse trabalho. Utilizámos uma técnica mais simples que permite a electrodeposição e “electrofilling” de nanoestruturas directamente nos modelos sobre o substrato metálico, utilizando solventes eutécticos profundos à base de cloreto de colina como electrólito. Relativamente à água, os solventes eutécticos profundos demonstram superior estabilidade térmica e uma janela electroquímica mais alargada, o que aumenta o número de materais secundários depositados. Como materiais a investigar foram escolhidos titânia e alumina dada a sua capacidade para formar estruturas porosas altamente ordenadas, propriedades eletroquímicas distintas e uso generalizado em síntese assistida por padrão. O estudo aqui apresentado encontra-se dividido em duas etapas. Primeiramente, a influência da camada barreira foi investigada em sistemas modelo através da utilização de filmes barreira densos na superfície dos elétrodos. Para os filmes de alumina e titânia, identificaram-se vários parâmetros que afectam a electrodeposição, dos quais se destacam a influência da voltagem de anodização, a espessura da camada de barreira, a dupla camada eléctrica e o perfil de corrente. Durante esta etapa detectaram-se efeitos nefastos, como a formação de uma densa camada orgânica na superfície do eléctrodo, que foram ultrapassados aumentando a temperatura ou alternando o potencial aplicado. A segunda etapa consistiu em passar de elétrodos planos (primeira etapa) para modelos porosos (segunda etapa). Foi realizado, com sucesso, o preenchimento dos poros de alumina e dos poros de titânia. Parâmetros como o perfil de corrente, temperatura de solução, entre outras, foram ajustadas para melhorar o fator de preenchimento e a homogeneidade do preenchimento. Foi desenvolvido um processo de preenchimento de moldes de alumina anódica em duas etapas, nucleação AC (1º passo) e preenchimento galvanostático (2º passo). Foram utilizadas três condições diferentes de modelos de titânia anódica porosa no “electrofilling”. O primeiro é sem modificação e demonstrou que a electroredução do zinco ocorre de forma aleatória ao longo de todo o comprimento do poro, o que leva ao fecho do poro e a um enchimento não homogéneo. A segunda modificação, cristalização total por têmpera, permite a preparação de estruturas coaxiais devido à deposição uniforme de zinco nas paredes dos poros. A última modificação foi a cristalização selectiva do fundo do poro. Foi descoberto que uma anodização adicional em eletrólitos não agressivos leva à cristalização da parte barreira dos tubos (fundo) e, consequentemente, a maior condutividade na parte inferior do que nas paredes. Este efeito permite um enchimento ascendente dos modelos porosos de titânia. As estratégias aqui apresentadas alargam a gama de possibilidades para a aplicação de modelos porosos anódicos na electrodeposição de diferentes nanoestruturas.