A numerical optimization approach to generate smoothing spherical splines

Approximating data in curved spaces is a common procedure that is extremely required by modern applications arising, for instance, in aerospace and robotics industries.Here, we are particularly interested in finding smoothing cubic splines that best fit given data in the Euclidean sphere. To achieve...

ver descrição completa

Detalhes bibliográficos
Autor principal: Machado, L. (author)
Outros Autores: Monteiro, M. Teresa T. (author)
Formato: article
Idioma:eng
Publicado em: 2017
Assuntos:
Texto completo:http://hdl.handle.net/1822/54469
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/54469
Descrição
Resumo:Approximating data in curved spaces is a common procedure that is extremely required by modern applications arising, for instance, in aerospace and robotics industries.Here, we are particularly interested in finding smoothing cubic splines that best fit given data in the Euclidean sphere. To achieve this aim, a least squares optimization problem based on the minimization of a certain cost functional is formulated. To solve the problem a numerical algorithm is implemented using several routines from MATLAB toolboxes. The proposed algorithm is shown to be easy to implement, very accurate and precise for spherical data chosen randomly. (C) 2016 Elsevier B.V. All rights reserved.