Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case
In this paper, we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_...
Main Author: | |
---|---|
Other Authors: | |
Format: | article |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10400.8/3822 |
Country: | Portugal |
Oai: | oai:iconline.ipleiria.pt:10400.8/3822 |