Density fluctuations for a zero-range process on the percolation cluster

We prove that the density fluctuations for a zero-range process evolving on the $d$-dimensional supercritical percolation cluster, with $d\geq{3}$, are given by a generalized Ornstein-Uhlenbeck process in the space of distributions $\mathcal{ S}'(\mathbb {R}^d)$.

Detalhes bibliográficos
Autor principal: Gonçalves, Patrícia (author)
Outros Autores: Jara, Milton (author)
Formato: article
Idioma:eng
Publicado em: 2009
Assuntos:
Texto completo:http://hdl.handle.net/1822/11582
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/11582
Descrição
Resumo:We prove that the density fluctuations for a zero-range process evolving on the $d$-dimensional supercritical percolation cluster, with $d\geq{3}$, are given by a generalized Ornstein-Uhlenbeck process in the space of distributions $\mathcal{ S}'(\mathbb {R}^d)$.