Resumo: | Este trabalho teve como objetivo a determinação dos parâmetros: Harmonic to Noise Ration (HNR), Noise to Harmonic Ratio (NHR) e Autocorrelação. Estes parâmetros são usados como entradas de um sistema inteligente para diagnóstico de patologias da fala. Foi realizada uma análise comparativa entre os valores do algoritmo e do software Praat, de modo a perceber qual a melhor janela e o seu comprimento, em número de períodos glotais. Desta análise resultou a decisão de se usar a janela de hanning com um comprimento correspondente a 6 períodos glotais. Através da comparação dos resultados chegou-se à conclusão que este algoritmo permite extrair os parâmetros HNR, NHR e Autocorrelação com valores suficientemente próximos dos valores de referência. Foi ainda desenvolvido um algoritmo para selecionar apenas a parte do sinal onde ocorre fala, eliminando as zonas de silêncio iniciais e finais, para, posteriormente, se extrair os Mel Frequency Cepstral Coefficientes (MFCCs), os Linear Prediction Coefficientes (LPC) e os Line Spectral Frequency (LSF). Ao longo do trabalho foi possível, embora não fosse o objetivo primordial, complementar uma base de dados curada, iniciada numa investigação anteriormente realizada, adicionando mais parâmetros e mais doenças. Esta base de dados ficou agora com os parâmetros MFCC com 13 coeficientes cepstrais, HNR, NHR, Autocorrelação, jitter absoluto, jitter relativo, shimmer absoluto, shimmer relativo, extraídos de 9 locuções correspondentes a 3 vogais em 3 tons e a uma frase, para sujeitos com 19 patologias, mais os sujeitos de controlo. Esta base de dados curada disponibiliza um conjunto de parâmetros sobre estes sinais de fala para a investigação sobre estas 19 patologias.
|