Summary: | Today's unprecedented demand changes flood the global market. Staying competitive is now a matter of responding quickly and cost-effectively to variability. To address this paradigm, flexibility is a key aspect to tackle. Studies show that integrating flexibility in design of systems increases their performance by 25%, yet application procedures are still not very well established. This dissertation proposes a solution methodology for this problem. Aiming control of demand variability consequences, an integrated approach of optimization, screening, and simulation modelling has been developed. Applied to a case study in the furniture manufacturing industry, the methodology highlighted numerous opportunities of improvement in the manufacturing site. Indeed, by applying a flexible design, the overall performance goals were reached and a plan of action was initiated.The results support the proposed methodology as a viable solution for the problem addressed, nevertheless future success involves more than the pure application of this procedure, as flexibility is also a way of thinking.
|