Programming languages for data-Intensive HPC applications: A systematic mapping study

This work is a result of activities from COST Action 10406 High -Performance Modelling and Simulation for Big Data Applications (cHiPSet), funded by the European Cooperation in Science and Technology. FCT, Portugal for grants: NOVA LINCS Research Laboratory Ref. UID/ CEC/ 04516/ 2019); INESC-ID Ref....

ver descrição completa

Detalhes bibliográficos
Autor principal: Amaral, Vasco (author)
Outros Autores: Norberto, Beatriz (author), Goulão, Miguel (author), Aldinucci, Marco (author), Benkner, Siegfried (author), Bracciali, Andrea (author), Carreira, Paulo (author), Celms, Edgars (author), Correia, Luís (author), Grelck, Clemens (author), Karatza, Helen (author), Kessler, Christoph (author), Kilpatrick, Peter (author), Martiniano, Hugo (author), Mavridis, Ilias (author), Pllana, Sabri (author), Respício, Ana (author), Simão, José (author), Veiga, Luís (author), Visa, Ari (author)
Formato: article
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10362/132902
País:Portugal
Oai:oai:run.unl.pt:10362/132902
Descrição
Resumo:This work is a result of activities from COST Action 10406 High -Performance Modelling and Simulation for Big Data Applications (cHiPSet), funded by the European Cooperation in Science and Technology. FCT, Portugal for grants: NOVA LINCS Research Laboratory Ref. UID/ CEC/ 04516/ 2019); INESC-ID Ref. UID/CEC/50021/2019; BioISI Ref. UID/MULTI/04046/2103; LASIGE Research Unit Ref. UID/CEC/00408/ 2019.