Hölder continuity of local weak solutions for parabolic equations exhibiting two degeneracies
We consider equations of the form atv - div(Q ( v)Vv) == 0 , where v E [0,1] and Q(v) degenerates for v == 0 and v == 1. We show that local weak solutions are locally Holder continuous provided Q behaves like a power near the two degeneracies. We adopt the technique of intrinsic rescaling developed...
Autor principal: | |
---|---|
Formato: | other |
Idioma: | eng |
Publicado em: |
1999
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10316/11553 |
País: | Portugal |
Oai: | oai:estudogeral.sib.uc.pt:10316/11553 |