A note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n
We show that the Riesz fractional integration operator I (alpha(center dot)) of variable order on a bounded open set in Omega aS, a"e (n) in the limiting Sobolev case is bounded from L (p(center dot))(Omega) into BMO(Omega), if p(x) satisfies the standard logcondition and alpha(x) is Holder con...
Main Author: | |
---|---|
Format: | article |
Language: | eng |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10400.1/11563 |
Country: | Portugal |
Oai: | oai:sapientia.ualg.pt:10400.1/11563 |