A note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n

We show that the Riesz fractional integration operator I (alpha(center dot)) of variable order on a bounded open set in Omega aS, a"e (n) in the limiting Sobolev case is bounded from L (p(center dot))(Omega) into BMO(Omega), if p(x) satisfies the standard logcondition and alpha(x) is Holder con...

ver descrição completa

Detalhes bibliográficos
Autor principal: Samko, Stefan (author)
Formato: article
Idioma:eng
Publicado em: 2018
Assuntos:
Texto completo:http://hdl.handle.net/10400.1/11563
País:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/11563
Descrição
Resumo:We show that the Riesz fractional integration operator I (alpha(center dot)) of variable order on a bounded open set in Omega aS, a"e (n) in the limiting Sobolev case is bounded from L (p(center dot))(Omega) into BMO(Omega), if p(x) satisfies the standard logcondition and alpha(x) is Holder continuous of an arbitrarily small order.