Biological evaluation of naproxen–dehydrodipeptide conjugates with self-hydrogelation capacity as dual LOX/COX inhibitors

The use of peptide–drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen–dehydrodipeptide conjugates, readily form nanostructured fibrilar supramo...

Full description

Bibliographic Details
Main Author: Moreira, Rute (author)
Other Authors: Jervis, Peter John (author), Carvalho, André (author), Ferreira, Paula M. T. (author), Martins, J. A. R. (author), Valentão, Patrícia (author), Andrade, Paula B. (author), Pereira, David M. (author)
Format: article
Language:eng
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/1822/64442
Country:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/64442
Description
Summary:The use of peptide–drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen–dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen–dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing <i>N</i>-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) <i>N</i>-capped with naproxen and linked to a <i>C</i>-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds <b>4</b> was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions.