Visual and inertial data integration to assist humanoid balance

Esta dissertação aborda o problema que consiste na medição do movimento da cabeça de um robot humanóide fundindo dados inerciais e visuais, com o objetivo de obter o output que melhor descreve o movimento da cabeça do humanóide. O seu principal objectivo é perceber e desenvolver um algoritmo usando...

Full description

Bibliographic Details
Main Author: Peixoto, João Carlos Pimentel Fidalgo (author)
Format: masterThesis
Language:eng
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10773/17955
Country:Portugal
Oai:oai:ria.ua.pt:10773/17955
Description
Summary:Esta dissertação aborda o problema que consiste na medição do movimento da cabeça de um robot humanóide fundindo dados inerciais e visuais, com o objetivo de obter o output que melhor descreve o movimento da cabeça do humanóide. O seu principal objectivo é perceber e desenvolver um algoritmo usando o Filtro de Kalman, que irá fundir ambas as fontes de dados com o propósito de obter uma nova fonte de informação com um maior grau de confiança. Para cumprir os objectivos, um modelo da cabeça do humanóide, juntamente com as câmaras e os sensores inerciais, vão ser movidos na ponta de um braço robótico industrial, que é usado como grupo de controle (ground truth) no que toca a posição angular. Pontos-chave nos frames obtidos através da câmara, são extra dos e usados para calcular a diferença na posição angular que ocorreu entre frames, que vão mais tarde, juntamente com os dados inerciais obtidos de giroscópios, servir de input a um modelo de um Filtro de Kalman. Uma vez que este dissertação assenta em ferramentas como o Filtro de Kalman, que tem como propósito unir dados de origens diferentes, é essencial que se conheçam os tipos de dados e ferramentas que irão ser utilizados. Assim, várias experiências foram desenvolvidas e estudadas com o intuito de desenvolver o conhecimento nessas matérias. Adicionalmente, erros foram acrescentados aos dados, artificialmente, com o objectivo de emular sensores sensíveis a ruído. No entanto, o sistema continua a ter uma performance positiva.