Summary: | O envelhecimento da população é uma tendência confirmada pelos últimos estudos realizados à população, tanto a nível nacional como internacional. Assim, garantir qualidade de vida e uma adequada monitorização, nas mais diversas dimensões dos idosos nas suas habitações, revela-se uma prioridade e, naturalmente, uma área de estudo relevante. A identificação de padrões de movimento e o treino de um algoritmo de machine learning para a deteção de outliers, representam os objetivos principais do trabalho. A monitorização de pessoas está frequentemente associada à perda de privacidade e autonomia. De forma a evitar estas situações, propusemo-nos explorar a capacidade de reutilizar soluções de IoT e sensorização existentes na habitação. Pretende-se extrair das soluções de smart homes, o máximo de informação possível para, numa primeira fase, estudar os padrões de movimento dos habitantes e, dessa forma, alavancar um conjunto de ações que potenciem o seu bem estar e monitorização. Para atingir os objetivos propostos no projeto, foram implementadas várias abordagens para o estudo de padrões, a análise da distribuição dos registos, o cálculo dos percentis e o cálculo da probabilidade da ocupação. Implementou-se um algoritmo de machine learning para proceder à identificação de outliers nos dados extraídos dos sensores da habitação.
|