Atomic polymorphism and the existence property
We present a purely proof-theoretic proof of the existence property for the full intuitionistic first-order predicate calculus, via natural deduction, in which commuting conversions are not needed. Such proof illustrates the potential of an atomic polymorphic system with only three generators of for...
Autor principal: | |
---|---|
Formato: | article |
Idioma: | eng |
Publicado em: |
2020
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.2/9416 |
País: | Portugal |
Oai: | oai:repositorioaberto.uab.pt:10400.2/9416 |
Resumo: | We present a purely proof-theoretic proof of the existence property for the full intuitionistic first-order predicate calculus, via natural deduction, in which commuting conversions are not needed. Such proof illustrates the potential of an atomic polymorphic system with only three generators of formulas – conditional and first and second-order universal quantifiers – as a tool for proof-theoretical studies. |
---|