On the Hausdorff Dimension of Continuous Functions Belonging to Hölder and Besov Spaces on Fractal d-Sets
The Hausdorff dimension of the graphs of the functions in Hölder and Besov spaces (in this case with integrability p≥1) on fractal d-sets is studied. Denoting by s in (0,1] the smoothness parameter, the sharp upper bound min{d+1-s, d/s} is obtained. In particular, when passing from d≥s to d<s the...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2012
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/5559 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/5559 |