On the Hausdorff Dimension of Continuous Functions Belonging to Hölder and Besov Spaces on Fractal d-Sets

The Hausdorff dimension of the graphs of the functions in Hölder and Besov spaces (in this case with integrability p≥1) on fractal d-sets is studied. Denoting by s in (0,1] the smoothness parameter, the sharp upper bound min{d+1-s, d/s} is obtained. In particular, when passing from d≥s to d<s the...

ver descrição completa

Detalhes bibliográficos
Autor principal: Carvalho, A. (author)
Outros Autores: Caetano, A. (author)
Formato: article
Idioma:eng
Publicado em: 2012
Assuntos:
Texto completo:http://hdl.handle.net/10773/5559
País:Portugal
Oai:oai:ria.ua.pt:10773/5559