Stability of syzygy bundles

We show that given integers $N$, $d$ and $n$ such that ${N\ge2}$, ${(N,d,n)\ne(2,2,5)}$, and ${N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $n$ monomials in $K[X_0,\ldots,X_N]$ of degree $d$ such that their syzygy bundle is stable. Case ${N\ge3}$ was obtained independently by Coand\v{a} with a...

Full description

Bibliographic Details
Main Author: Macias Marques, Pedro (author)
Other Authors: Miró Roig, Rosa María (author)
Format: article
Language:eng
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10174/2502
Country:Portugal
Oai:oai:dspace.uevora.pt:10174/2502
Description
Summary:We show that given integers $N$, $d$ and $n$ such that ${N\ge2}$, ${(N,d,n)\ne(2,2,5)}$, and ${N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $n$ monomials in $K[X_0,\ldots,X_N]$ of degree $d$ such that their syzygy bundle is stable. Case ${N\ge3}$ was obtained independently by Coand\v{a} with a different choice of families of monomials [Coa09]. For ${(N,d,n)=(2,2,5)}$, there are $5$ monomials of degree~$2$ in $K[X_0,X_1,X_2]$ such that their syzygy bundle is semistable.