A finite element approximation for a class of Caputo time-fractional diffusion equations
We develop a fully discrete scheme for time-fractional diffusion equations by using a finite difference method in time and a finite element method in space. The fractional derivatives are used in Caputo sense. Stability and error estimates are derived. The accuracy and efficiency of the presented me...
Main Author: | |
---|---|
Other Authors: | , |
Format: | article |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10773/26382 |
Country: | Portugal |
Oai: | oai:ria.ua.pt:10773/26382 |
Summary: | We develop a fully discrete scheme for time-fractional diffusion equations by using a finite difference method in time and a finite element method in space. The fractional derivatives are used in Caputo sense. Stability and error estimates are derived. The accuracy and efficiency of the presented method is shown by conducting two numerical examples. |
---|