Summary: | This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a p- Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixedpoint argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local H¨older regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model.
|