Extremes of multivariate ARMAX processes

We define a new multivariate time series model by generalizing the ARMAX process in a multivariate way. We give conditions on stationarity and analyze local dependence and domains of attraction. As a consequence of the obtained results, we derive new multivariate extreme value distributions.We chara...

ver descrição completa

Detalhes bibliográficos
Autor principal: Ferreira, Marta Susana (author)
Outros Autores: Ferreira, Helena (author)
Formato: article
Idioma:eng
Publicado em: 2013
Assuntos:
Texto completo:http://hdl.handle.net/1822/24610
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/24610
Descrição
Resumo:We define a new multivariate time series model by generalizing the ARMAX process in a multivariate way. We give conditions on stationarity and analyze local dependence and domains of attraction. As a consequence of the obtained results, we derive new multivariate extreme value distributions.We characterize the extremal dependence by computing the multivariate extremal index and bivariate upper tail dependence coefficients. An estimation procedure for the multivariate extremal index is presented. We also address the marginal estimation and propose a new estimator for the ARMAX autoregressive parameter.