Unary semigroups with an associate subgroup

A subgroup H of a regular semigroup S is said to be an associate subgroup of S if for every s ∈ S, there is a unique associate of s in H. An idempotent z of S is said to be medial if czc = c, for every c product of idempotents of S. Blyth and Martins established a structure theorem for semigroups wi...

Full description

Bibliographic Details
Main Author: Martins, Paula Mendes (author)
Other Authors: Petrich, Mario (author)
Format: article
Language:eng
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/1822/11004
Country:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/11004
Description
Summary:A subgroup H of a regular semigroup S is said to be an associate subgroup of S if for every s ∈ S, there is a unique associate of s in H. An idempotent z of S is said to be medial if czc = c, for every c product of idempotents of S. Blyth and Martins established a structure theorem for semigroups with an associate subgroup whose identity is a medial idempotent, in terms of an idempotent generated semigroup, a group and a single homomorphism. Here, we construct a system of axioms which characterize these semigroups in terms of a unary operation satisfying those axioms. As a generalization of this class of semigroups, we characterize regular semigroups S having a subgroup which is a transversal of a congruence on S.