Análise biomecânica da reconstrução do ligamento cruzado anterior

Em desportos com muita exposição dos joelhos aos traumatismos, especialmente forças de torção ocorrentes numa mudança de direção, são frequentes as roturas dos ligamentos cruzados. No entanto, forças de baixa magnitude podem também causar roturas em ligamentos debilitados pela idade, doença, imobili...

ver descrição completa

Detalhes bibliográficos
Autor principal: Oliveira, Carlos Daniel Santos (author)
Formato: masterThesis
Idioma:por
Publicado em: 2018
Assuntos:
Texto completo:http://hdl.handle.net/10773/22255
País:Portugal
Oai:oai:ria.ua.pt:10773/22255
Descrição
Resumo:Em desportos com muita exposição dos joelhos aos traumatismos, especialmente forças de torção ocorrentes numa mudança de direção, são frequentes as roturas dos ligamentos cruzados. No entanto, forças de baixa magnitude podem também causar roturas em ligamentos debilitados pela idade, doença, imobilização, esteroides ou insuficiência vascular. Na rotura do ligamento cruzado anterior (LCA) o tratamento pode ser efetuado através de cirurgia ou de tratamento conservador, em casos de pouca motivação desportiva. Em jovens atletas com altas exigências físicas a reconstrução do ligamento é altamente aconselhável. São diversas as técnicas de plastia utilizadas na reconstrução do LCA, mas quase todas passam pela colheita de um enxerto de tendão que vai ser colocado através de túneis ósseos que atravessam a tíbia e o fémur ou passar “over the top”, como preconizam alguns autores em crianças, de forma a substituir o ligamento cruzado que lacerou. Embora raramente, há quem ainda utilize ligamentos sintéticos. No entanto, o sucesso desta reconstrução está diretamente ligado aos alinhamentos e posicionamentos dos tuneis ósseos na tíbia e no fémur, assim como do nível de tensão instalado no enxerto ligamentar. Assim, a presente dissertação pretendeu desenvolver um estudo biomecânico pormenorizado da reconstrução do LCA, relacionando os parâmetros de alinhamento e posicionamentos dos tuneis ósseos, na repartição de carga nas estruturas adjacentes, tais como a cartilagem articular, meniscos e restantes estruturas ligamentares, assim como no movimento da articulação. Neste estudo utilizou-se um modelo geométrico do joelho nativo com as estruturas ósseas, cartilagíneas, meniscais e ligamentares obtidas através de ressonância magnética de um joelho de cadáver. Nos modelos de reconstrução do LCA o ligamento nativo foi substituído por quatro neo-ligamentos de enxerto osso-tendão-osso. A informação relativa aos diferentes posicionamentos dos tuneis tibiais e femorais para a reconstrução ligamentar foi recolhida do trabalho desenvolvido em cadáver pelo coorientador deste trabalho e publicado na sua tese de doutoramento. Com base na informação geométrica do joelho e de posição da reconstrução do LCA foram desenvolvidos cinco modelos de elementos finitos, um relativo ao joelho intacto e quatro de reconstruções do LCA. Nestes modelos numéricos após a definição das propriedades mecânicas e condições de contacto foram impostas forças e momentos no fémur representativas do ciclo de marcha durante o movimento de flexão desde a extensão até uma flexão máxima de 100º. Posteriormente foram analisados os resultados de pressão de contacto, área de contacto, deformações principais máximas e mínimas nas cartilagens, deslocamentos lineares e rotações do fémur relativamente à tíbia, deslocamentos dos meniscos, e tensões de Von Mises e deformações principais máximas nos ligamentos. Os resultados obtidos evidenciam que o posicionamento dos tuneis na tíbia e fémur influenciam decisivamente o comportamento estrutural e cinemático do joelho. As reconstruções cujas inserções são mais afastadas das nativas do LCA foram as que revelaram maiores diferenças de comportamento relativamente ao joelho saudável enquanto as reconstruções mais próximas ofereceram resultados que se aproximam do comportamento do joelho nativo.