Going to the core of hard resource-constrained project scheduling instances

The resource-constrained project scheduling problem (RCPSP) is one of the most studied problems in the project scheduling literature, and aims at constructing a project schedule with a minimum makespan that satisfies both the precedence relations of the network and the limited availability of the re...

ver descrição completa

Detalhes bibliográficos
Autor principal: Coelho, José (author)
Outros Autores: Vanhoucke, Mario (author)
Formato: article
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10400.2/12598
País:Portugal
Oai:oai:repositorioaberto.uab.pt:10400.2/12598
Descrição
Resumo:The resource-constrained project scheduling problem (RCPSP) is one of the most studied problems in the project scheduling literature, and aims at constructing a project schedule with a minimum makespan that satisfies both the precedence relations of the network and the limited availability of the renewable resources. The problem has attracted attention due to its NP hardness status, and different algorithms have been proposed that solve a wide variety of RCPSP instances to optimality or near-optimality. In this paper, we analyse the hardness of this problem from an experimental point-of-view by testing different algorithms on a huge set of existing instances and detect which ones are difficult to solve. To that purpose, we propose a three-phased approach that makes use of five elementary blocks, well-performing algorithms and a huge amount of computational power to transform easy RCPSP instances into very hard ones. The purpose of this study is to create insight and understanding into what makes an RCPSP instance hard, and propose a new dataset that consists of a small set of instances that are impossible to solve with the algorithms currently existing in the literature. These instances should be as small as possible in terms of number of activities and resources, and should be as diverse as possible in terms of network structure and resource strictness. Such a dataset should enable researchers to focus their attention on the development of radically new algorithms to solve the RCPSP rather than gradually improving current algorithms that can solve the existing RCPSP instances only slightly better.