Switching in Heteroclinic Networks

We study the dynamics near heteroclinic networks for which all eigenvalues of the linearization at the equilibria are real. A common connection and an assumption on the geometry of its incoming and outgoing directions exclude even the weakest forms of switching (i.e., along this connection). The for...

Full description

Bibliographic Details
Main Author: Castro, SBSD (author)
Other Authors: Lohse, A (author)
Format: article
Language:eng
Published: 2016
Online Access:https://hdl.handle.net/10216/110959
Country:Portugal
Oai:oai:repositorio-aberto.up.pt:10216/110959
Description
Summary:We study the dynamics near heteroclinic networks for which all eigenvalues of the linearization at the equilibria are real. A common connection and an assumption on the geometry of its incoming and outgoing directions exclude even the weakest forms of switching (i.e., along this connection). The form of the global transition maps, and thus the type of the heteroclinic cycle, plays a crucial role in this. We look at two examples in R-5, the House and Bowtie networks, to illustrate complex dynamics that may occur when either of these conditions is broken. For the House network, there is switching along the common connection, while for the Bowtie network we find switching along a cycle.