An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer
A nano-molecularly imprinted polymer (N-MIP) assembled on a screen-printed electrode for the cardiac troponin T (cTnT) was developed. The biomimetic surface was obtained by a co-polymer matrix as-sembled on the reduced graphene oxide (RGO) electrode surface. The cTnT active sites were engineered usi...
Autor principal: | |
---|---|
Outros Autores: | , , , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2016
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.22/10041 |
País: | Portugal |
Oai: | oai:recipp.ipp.pt:10400.22/10041 |
Resumo: | A nano-molecularly imprinted polymer (N-MIP) assembled on a screen-printed electrode for the cardiac troponin T (cTnT) was developed. The biomimetic surface was obtained by a co-polymer matrix as-sembled on the reduced graphene oxide (RGO) electrode surface. The cTnT active sites were engineered using pyrrole and carboxylated pyrrole that was one-step electropolymerized jointly with cTnT by cyclic voltammetry. The stepwise preparation of the biomimetic surface was characterized by cyclic and dif-ferential pulse voltammetries using the ferrocyanide/ferricyanide as redox probe. Structural and mor-phological characterization was also performed. The optimal relation of pyrrole and pyrrole-3-acid car-boxylic to perform the cTnT biomimetic nanosurface was obtained at 1:5 ratio. The analytical perfor-mance of cTnT N-MIP performed by differential pulse voltammetry showed a linear range from 0.01 to 0.1 ng mL-1 (r¼0.995, p«0.01), with a very low limit of detection (0.006 ng mL-1). The synergic effect of conductive polymer and graphene forming 3D structures of reactive sites resulted in a N-MIP with ex-cellent affinity to cTnT binding (KD¼7.3 10-13 mol L-1). The N-MIP proposed is based on a simple method of antibody obtaining with a large potential for point-of-care testing applications. |
---|