Exploring alternative biomarkers of pesticide pollution in clams

Acetylcholinesterase (AChE) is a reliable biomarker of pesticide exposure although in clams this activity is often very low or undetectable. Carboxylesterases (CEs) exhort several physiological roles, but also respond to pesticides. Searching for an AChE alternative, baseline CE activities were char...

Full description

Bibliographic Details
Main Author: Solé, Montserrat (author)
Other Authors: Bonsignore, Martina (author), Rivera-Ingraham, Georgina (author), Freitas, Rosa (author)
Format: article
Language:eng
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/10773/27391
Country:Portugal
Oai:oai:ria.ua.pt:10773/27391
Description
Summary:Acetylcholinesterase (AChE) is a reliable biomarker of pesticide exposure although in clams this activity is often very low or undetectable. Carboxylesterases (CEs) exhort several physiological roles, but also respond to pesticides. Searching for an AChE alternative, baseline CE activities were characterised in Ruditapes decussatus gills and digestive glands using five substrates suggestive of different isozymes. The long chain p-nitrophenyl butyrate and 1-naphthyl butyrate were the most sensitive. In the digestive gland, their kinetic parameters (Vmax and Km) and in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon (CPX) were calculated. IC50 values, in the pM–nM range, suggest a high protection efficiency of CE-related enzymes towards CPX neurotoxicity. Other targeted enzymes were: activities of glutathione reductase, glutathione peroxidase, catalase, glutathione S-transferases (GSTs) and lactate dehydrogenase in gills and digestive glands. The high GSTs activity and CE/AChE ratio suggests that R. decussatus has a great capacity for enduring pesticide exposure.