Effect of filler content on morphology and physical-chemical characteristics of poly(vinylidene fluoride)/NaY-zeolite filled membranes
Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents,...
Autor principal: | |
---|---|
Outros Autores: | , , , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2014
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/11110/614 |
País: | Portugal |
Oai: | oai:ciencipca.ipca.pt:11110/614 |
Resumo: | Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distributions between the previous fiber size values. Hydrophobicity of the membranes increases from ~115º water contact angle to ~128º with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137º. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications. |
---|