Isospectral reduction in infinite graphs

L. A. Bunimovich and B. Z. Webb developed a theory for transforming a finite weighted graph while preserving its spectrum, referred as isospectral reduction theory. In this work we extend this theory to a class of operators on Banach spaces that include Markov type operators. We apply this theory to...

Full description

Bibliographic Details
Main Author: Duarte, Pedro (author)
Other Authors: Torres, M. J. (author)
Format: article
Language:eng
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/1822/69039
Country:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/69039
Description
Summary:L. A. Bunimovich and B. Z. Webb developed a theory for transforming a finite weighted graph while preserving its spectrum, referred as isospectral reduction theory. In this work we extend this theory to a class of operators on Banach spaces that include Markov type operators. We apply this theory to infinite countable weighted graphs admitting a finite structural set to calculate the stationary measures of a family of countable Markov chains.