The 123 theorem of Probability Theory and Copositive Matrices
Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(‖X − Y‖ b) c Prob(‖X − Y‖ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued ca...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2014
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10316/102687 |
País: | Portugal |
Oai: | oai:estudogeral.sib.uc.pt:10316/102687 |
Resumo: | Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(‖X − Y‖ b) c Prob(‖X − Y‖ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions. |
---|