Summary: | Humans need to interact socially with others and the environment. These interactions lead to complex systems that elude naïve and casuistic tools for understand these explanations. One way is to search for mechanisms and patterns of behavior in our activities. In this thesis, we focused on players’ interactions in team sports performance and how using complex systems tools, notably complex networks theory and tools, can contribute to Performance Analysis. We began by exploring Network Theory, specifically Social Network Analysis (SNA), first applied to Volleyball (experimental study) and then on soccer (2014 World Cup). The achievements with SNA proved limited in relevant scenarios (e.g., dynamics of networks on n-ary interactions) and we moved to other theories and tools from complex networks in order to tap into the dynamics on/off networks. In our state-of-the-art and review paper we took an important step to move from SNA to Complex Networks Analysis theories and tools, such as Hypernetworks Theory and their structural Multilevel analysis. The method paper explored the Multilevel Hypernetworks Approach to Performance Analysis in soccer matches (English Premier League 2010-11) considering n-ary cooperation and competition interactions between sets of players in different levels of analysis. We presented at an international conference the mathematical formalisms that can express the players’ relationships and the statistical distributions of the occurrence of the sets and their ranks, identifying power law statistical distributions regularities and design (found in some particular exceptions), influenced by coaches’ pre-match arrangement and soccer rules.
|