The largest subsemilattices of the endomorphism monoid of an independence algebra

An algebra A is said to be an independence algebra if it is a matroid algebra and every map α:X→A, defined on a basis X of A, can be extended to an endomorphism of A. These algebras are particularly well-behaved generalizations of vector spaces, and hence they naturally appear in several branches of...

ver descrição completa

Detalhes bibliográficos
Autor principal: Araújo, João (author)
Outros Autores: Bentz, Wolfram (author), Konieczny, Janusz (author)
Formato: article
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/10400.2/3804
País:Portugal
Oai:oai:repositorioaberto.uab.pt:10400.2/3804