Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3)

The incidence of breast cancer has been increasing over the years. To control and monitor this disease several tumor biomarkers have been proposed for early diagnosis, patient follow-up and/or treatment guidance. The only serum breast cancer biomarker in current use is the cancer antigen 15-3 (CA 15...

Full description

Bibliographic Details
Main Author: Pacheco, João (author)
Other Authors: Silva, Marta S.V. (author), Freitas, Maria (author), Nouws, Henri (author), Delerue-Matos, Cristina (author)
Format: article
Language:eng
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10400.22/14708
Country:Portugal
Oai:oai:recipp.ipp.pt:10400.22/14708
Description
Summary:The incidence of breast cancer has been increasing over the years. To control and monitor this disease several tumor biomarkers have been proposed for early diagnosis, patient follow-up and/or treatment guidance. The only serum breast cancer biomarker in current use is the cancer antigen 15-3 (CA 15-3). In this work a molecularly imprinted polymer (MIP)-based electrochemical (voltammetric) sensor to monitor breast cancer was developed, based on direct surface imprinting of CA 15-3 on a screen-printed gold electrode (Au-SPE). The imprinting was performed in two steps: (1) adsorption of CA 15-3 on the surface of the Au-SPE and (2) electropolymerization of 2-aminophenol around the adsorbed protein. After extraction of the imprinted protein voltammetric analysis was conducted using hexacyanoferrate(II/III) as redox probe, measuring the signals before and after protein binding. The sensor was characterized by voltammetric techniques and electrochemical impedance spectroscopy, and the analytical responses of imprinted and non-imprinted polymer sensors were studied. A linear relationship between the peak current intensity of the redox probe and the logarithm of CA 15-3 concentration was established between 5 and 50 U mL−1, achieving a limit of detection of 1.5 U mL−1. The prepared MIP-sensor provides fast (15 min) analysis and is cheap, easy to prepare, disposable and could easily be integrated in small portable point-of care devices.