Summary: | Transportation data in smart cities is becoming increasingly available. This data allows building meaningful, intelligent solutions for city residents and city management authorities, the so-called Intelligent Transportation Systems. Our research focused on Lisbon mobility data, provided by Lisbon municipality. The main research objective was to address mobility problems, interdependence, and cascading effects solutions for the city of Lisbon. We developed a data-driven approach based on historical data with a strong focus on visualization methods and dashboard creation. Also, we applied a method based on time series to do prediction based on the traffic congestion data provided. A CRISP-DM approach was applied, integrating different data sources, using Python. Hence, understand traffic patterns, and help the city authorities in the decision-making process, namely more preparedness, adaptability, responsiveness to events.
|