Summary: | The development of fall detection systems with the capability of real-time monitoring is necessary considering that a large amount of people die and suffer severe consequences from falls. Due to their advantages, daily life accessories can be a solution to embed fall-related systems, and canes are no exception. In this paper, it is presented a cane with fall detection abilities. The ASCane is instrumented with an inertial sensor which data will be tested with three different fixed multi-threshold fall detection algorithms, one dynamic multi-threshold and machine learning methods from the literature. They were tested and modified to account the use of a cane. The best performance resulted in a sensitivity and specificity of 96.90% and 98.98%, respectively.
|