DNA cleavage activity of VIVO(acac)2 and derivatives

The DNA cleavage activity of several b-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate,VIVO(acac)2, 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes VIVO(hd)...

Full description

Bibliographic Details
Main Author: Butenko, Nataliya (author)
Other Authors: Tomaz, Ana Isabel (author), Nouri, Ofelia (author), Escribano, Esther (author), Moreno, Virtudes (author), Gama, Sofia (author), Ribeiro, Vera (author), Telo, João Paulo (author), Pessoa, João Costa (author), Cavaco, Isabel Maria Palma Antunes (author)
Format: article
Language:eng
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10400.1/3261
Country:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/3261
Description
Summary:The DNA cleavage activity of several b-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate,VIVO(acac)2, 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes VIVO(hd)2(2, Hhd = 3,5-heptanedione), VIVO(acac-NH2)2 (3, Hacac-NH2 = acetoacetamide) and VIVO(acac-NMe2)2(4, Hacac-NMe2 = N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1 2 3 4.The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes,mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.