Convergence to self-similarity in an addition model with power-like time-dependent input of monomers

In this note we extend the results published in Ref. 1 to a coagulation system with Becker-Doring type interactions and time-dependent input of monomers $J_{1}(t)$ of power–like type: $J_{1}(t)/(\alpha t^{\omega }) \rightarrow 1$ as $t \rightarrow \infty$, with $\alpha > 0$ and $\omega > − \fr...

ver descrição completa

Detalhes bibliográficos
Autor principal: Costa, Fernando Pestana da (author)
Outros Autores: Sasportes, Rafael (author), Pinto, João Teixeira (author)
Formato: bookPart
Idioma:eng
Publicado em: 2011
Assuntos:
Texto completo:http://hdl.handle.net/10400.2/1715
País:Portugal
Oai:oai:repositorioaberto.uab.pt:10400.2/1715
Descrição
Resumo:In this note we extend the results published in Ref. 1 to a coagulation system with Becker-Doring type interactions and time-dependent input of monomers $J_{1}(t)$ of power–like type: $J_{1}(t)/(\alpha t^{\omega }) \rightarrow 1$ as $t \rightarrow \infty$, with $\alpha > 0$ and $\omega > − \frac{1}{2}$. The general framework of the proof follows Ref. 1 but a different strategy is needed at a number of points.