Seleção de atributos usando árvores de decisão não-binárias

A aprendizagem automática, área integrada na inteligência artificial, possui como principal objetivo a criação e o desenvolvimento de métodos e algoritmos que possuam capacidades comummente associadas aos humanos, como a aquisição e a descoberta de novos factos ou conhecimentos. Quando comparado com...

Full description

Bibliographic Details
Main Author: Ferreira, Bruno André Silva (author)
Format: masterThesis
Language:por
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11067/4498
Country:Portugal
Oai:oai:repositorio.ulusiada.pt:11067/4498
Description
Summary:A aprendizagem automática, área integrada na inteligência artificial, possui como principal objetivo a criação e o desenvolvimento de métodos e algoritmos que possuam capacidades comummente associadas aos humanos, como a aquisição e a descoberta de novos factos ou conhecimentos. Quando comparado com humanos, as principais vantagens da implementação destes métodos estão normalmente associadas a otimizações temporais e monetárias. Este trabalho apresenta um estudo de seleção de atributos/características e capacidade de previsão/classificação aplicado à monitorização de condições de ferramentas de corte (desgaste de ferramentas) e a classificação de potenciais novos clientes para serviços bancários (telemarketing bancário), usando as árvores de decisão ID3 com a capacidade de lidar com variáveis contínuas – algoritmo adaptado neste trabalho. Os resultados obtidos demonstram que este algoritmo, em comparação com as árvores de decisão convencionais, para conjuntos de dados reduzidos, apresenta o melhor desempenho. A seleção de atributos realizada pelo algoritmo adaptado provou ser uma mais-valia, quer seja para posterior classificação com a aplicação do algoritmo desenvolvido ou com a aplicação de outros algoritmos de referência na área de aprendizagem automática. Os resultados obtidos dos conjuntos de dados do desgaste de ferramentas e do telemarketing bancário apresentam uma redução de 15 para 5 e de 19 para 15 atributos, respetivamente. Em ambos os estudos ficou demonstrada a eficácia desta abordagem bem como a aplicabilidade na seleção de atributos de forma simples e transparente, mesmo na presença de dados com ruído.