Crossover to the KPZ equation

We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry $an^{2-\gamma}$ ($a,\gamma>0$) and it occurs at $\gamma=1/2$. We show that the density field is a solution of an Ornstein-...

ver descrição completa

Detalhes bibliográficos
Autor principal: Gonçalves, Patrícia (author)
Outros Autores: Jara, Milton (author)
Formato: article
Idioma:eng
Publicado em: 2012
Assuntos:
Texto completo:http://hdl.handle.net/1822/16880
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/16880
Descrição
Resumo:We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry $an^{2-\gamma}$ ($a,\gamma>0$) and it occurs at $\gamma=1/2$. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if $\gamma\in(1/2,1]$, while for $\gamma=1/2$ it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.