Censored multivariate linear regression model

Often, real life problems require modelling several response variables together. This work analyses multivariate linear regression model when the data are censored. Censoring distorts the correlation structure of the underlying variables and increases the bias of the usual estimators. Thus, we propo...

ver descrição completa

Detalhes bibliográficos
Autor principal: Pereira, Isabel (author)
Outros Autores: Sousa, Rodney (author), Silva, Maria Eduarda (author)
Formato: bookPart
Idioma:eng
Publicado em: 2023
Assuntos:
Texto completo:http://hdl.handle.net/10773/35510
País:Portugal
Oai:oai:ria.ua.pt:10773/35510
Descrição
Resumo:Often, real life problems require modelling several response variables together. This work analyses multivariate linear regression model when the data are censored. Censoring distorts the correlation structure of the underlying variables and increases the bias of the usual estimators. Thus, we propose three methods to deal with multivariate data under left censoring, namely, Expectation Maximization (EM), Data Augmen- tation (DA) and Gibbs Sampler with Data Augmentation (GDA). Re- sults from a simulation study show that both, DA and GDA estimates are consistent for low and moderate correlation.