Prediction of dementia patients: A comparative approach using parametric vs. non parametric classifiers

In this paper, we report a comparison study of 7 non parametric classifiers (Multilayer perceptron Neural Networks, Radial Basis Function Neural Networks, SupportVectorMachines, CART, CHAID and QUEST Classification trees and Random Forests) as compared to Linear Discriminant Analysis, Quadratic Disc...

ver descrição completa

Detalhes bibliográficos
Autor principal: Maroco, João (author)
Outros Autores: Silva, Dina Lúcia Gomes da (author), Guerreiro, Manuela (author), Mendonça, Alexandre de (author), Santana, Isabel (author)
Formato: conferenceObject
Idioma:eng
Publicado em: 2012
Texto completo:http://hdl.handle.net/10400.12/1691
País:Portugal
Oai:oai:repositorio.ispa.pt:10400.12/1691
Descrição
Resumo:In this paper, we report a comparison study of 7 non parametric classifiers (Multilayer perceptron Neural Networks, Radial Basis Function Neural Networks, SupportVectorMachines, CART, CHAID and QUEST Classification trees and Random Forests) as compared to Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression tested in a real data application of mild cognitive impaired elderly patients conversion to dementia. When classification results are compared both on overall accuracy, specificity and sensitivity, Linear Discriminant Analysis and Random Forests rank first among all the classifiers.