Development of aqueous (micellar) two phase systems to continously purify macroalgae compounds

Currently, macroalgae have been widely studied as a new raw material in the industry. This high interest is due to the fact that macroalgae have attractive production conditions, as well as having high added value compounds, such as phycobiliproteins. Phycobiliproteins, in particular R-phycoerythrin...

Full description

Bibliographic Details
Main Author: Moreira, Filipa Alexandra Lima (author)
Format: masterThesis
Language:eng
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/10773/25592
Country:Portugal
Oai:oai:ria.ua.pt:10773/25592
Description
Summary:Currently, macroalgae have been widely studied as a new raw material in the industry. This high interest is due to the fact that macroalgae have attractive production conditions, as well as having high added value compounds, such as phycobiliproteins. Phycobiliproteins, in particular R-phycoerythrin, are proteins that act as natural light-picking pigments, which have very attractive biological properties, especially antioxidant, anticancer and anti-inflammatory properties. Therefore, given the interesting characteristics of this protein, many companies have developed a high interest in these macromolecules, considering in particular the high potential of these in the pharmaceutical, cosmetic and energy sectors. Having said that, it is necessary to establish efficient extraction and purification methods that allow the use of R-phycoerythrin. In relation to the existing methods, these involve multiple steps, which normally represent processes of high complexity and/or which require a high energy consumption which implies the enhancement of the final product. In this sense, this work will aim to develop and optimize a continuous purification process of R-phycoerythrin using two-phase aqueous micellar systems (AMTPS). These systems appear to be more selective and more biocompatible because they do not interfere with biomolecules. In this work, a separation unit with temperature control will be designed for the first time for the application of AMTPS in continuous flow regime.